概要:121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等124如果两个圆相切,那么切点一定在连心线上125①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-rr)④两圆内切 d=R-r(R>r) ⑤两圆内含dr)126定理 相交两圆的连心线垂直平分两圆的公共弦127定理 把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 www.kgf8.com128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆129正n边形的每个内角都等于(n-2)×180°/n130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形131正n边形的面积Sn=pnr
初二(八年级)数学上册知识点总结,标签:八年级数学知识点,http://www.kgf8.com121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
124如果两个圆相切,那么切点一定在连心线上
125①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-rr)
④两圆内切 d=R-r(R>r) ⑤两圆内含dr)
126定理 相交两圆的连心线垂直平分两圆的公共弦
127定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 www.kgf8.com
128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
129正n边形的每个内角都等于(n-2)×180°/n
130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
131正n边形的面积Sn=pnrn/2 p表示正n边形的周长
132正三角形面积√3a/4 a表示边长
133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
134弧长计算公式:L=n兀R/180
135扇形面积公式:S扇形=n兀R^2/360=LR/2
136内公切线长= d-(R-r) 外公切线长= d-(R+r)
...更多内容请点击下载》》》》 初二数学上册知识点