概要:初一数学一元一次方程练习:【课前复习】1.在等式3y-6=7的两边同时( ),得到3y=13.2.方程-5x+3=8的根是( ).3.x的5倍比x的2倍大12可列方程为( ).4.写一个以x=-2为解的方程( ) .5.如果x=-1是方程2x-3m=4的根,则m的值是( ) .6.如果方程 是一元一次方程,则( ) . ⑴ 方程:含有未知数的( )叫做方程;使方程左右两边值相等的( ),叫做方程的解;求方程解的( )叫做解方程. 方程的解与解方程不同。⑵ 一元一次方程:在整式方程中,只含有( )个未知数,并且未知数的次数是( ),系数不等于0的方程叫做一元一次方程;它的一般形式为 (a不等于0)。3. 解一元一次方程的步骤:①去( ) ;②去( );③移( );④合并( );⑤系数化为1. (2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意"移项"要变号. 吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额
初一数学知识点:一元一次方程应用及练习,标签:七年级数学学习指导,http://www.kgf8.com初一数学一元一次方程练习:
【课前复习】
1.在等式3y-6=7的两边同时( ),得到3y=13.
2.方程-5x+3=8的根是( ).
3.x的5倍比x的2倍大12可列方程为( ).
4.写一个以x=-2为解的方程( ) .
5.如果x=-1是方程2x-3m=4的根,则m的值是( ) .
6.如果方程 是一元一次方程,则( ) .
⑴ 方程:含有未知数的( )叫做方程;使方程左右两边值相等的( ),叫做方程的解;求方程解的( )叫做解方程. 方程的解与解方程不同。
⑵ 一元一次方程:在整式方程中,只含有( )个未知数,并且未知数的次数是( ),系数不等于0的方程叫做一元一次方程;它的一般形式为 (a不等于0)。
3. 解一元一次方程的步骤:
①去( ) ;②去( );③移( );④合并( );⑤系数化为1.
(2)解方程的基本思想就是应用等式的基本性质进行转化,要注意:①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解;②去分母时,不要漏乘没有分母的项;③解方程时一定要注意"移项"要变号.
吴老师统计时不小心把墨水滴到了其中两个班级的捐款金额上,但他知道下面三条信息:
信息一:这三个班的捐款总金额是7700元;
信息二:(2)班的捐款金额比(3)班的捐款金额多300元;
信息三:(1)班学生平均每人捐款的金额大于48元,小于51元.
请根据以上信息,帮助吴老师解决下列问题:
(1)求出(2)班与(3)班的捐款金额各是多少元;
(2)求出(1)班的学生人数.
【中考练习】
1.若5x-5的值与2x-9的值互为相反数,则x=_____.
6. 某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %.该厂第一季度生产甲、乙两种机器各多少台?
7. 苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:
①每亩水面的年租金为500元,水面需按整数亩出租;
②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;
④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
(1) 若租用水面 亩,则年租金共需__________元;
(2) 水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);
(3) 李大爷现在奖金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合养殖.已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元?