概要: 苏珊很为难.她步行去学校,路上老是遇到斯廷基.斯廷基:"嘿嘿,苏珊,我可以陪你一起走吗?"苏珊:"不!请走开."苏珊心想:我有办法了.每天早上我走不同的路线去学校.这样斯廷基就不知道在哪儿找到我了.这张地图表示苏珊的住所和学校之间的所有街道.苏珊去学校时,走路的方向总是朝南或朝东.她总共有多少条路线呢?苏珊:"我真想知道有多少条路线可走.让我想一想.要算出多少条路线看来并不简单.嗯.啊哈!一点不难,简单的很!"苏珊想到了什么好主意?她的推理如下:苏珊:"在我家这个角点上写一个1,因为我只能从这一点出发.然后在遇刺相隔一个街区的两个角点上各写一个1,因为到那里只有一条途径.现在,我在这个角点上写上2,因为到达那里可以有两条途径.苏珊发现2是1加1之和,她忽然领悟:若到某一个仅有一条途径,则该角点上的数字为前一个角点上的数字;若有两条途径,则为前两个角点上的数字之和.苏珊:"瞧,又有四个角点标上了数字,我马上把其他角点也标上数字."请你替苏珊把剩下的角点标上数字,并且告诉她
中学趣味数学:帕斯卡三角形与道路问题,标签:七年级数学练习题,http://www.kgf8.com苏珊很为难.她步行去学校,路上老是遇到斯廷基.斯廷基:"嘿嘿,苏珊,我可以陪你一起走吗?"苏珊:"不!请走开."
苏珊心想:我有办法了.每天早上我走不同的路线去学校.这样斯廷基就不知道在哪儿找到我了.这张地图表示苏珊的住所和学校之间的所有街道.苏珊去学校时,走路的方向总是朝南或朝东.她总共有多少条路线呢?
苏珊:"我真想知道有多少条路线可走.让我想一想.要算出多少条路线看来并不简单.嗯.啊哈!一点不难,简单的很!"苏珊想到了什么好主意?
她的推理如下:苏珊:"在我家这个角点上写一个1,因为我只能从这一点出发.然后在遇刺相隔一个街区的两个角点上各写一个1,因为到那里只有一条途径.现在,我在这个角点上写上2,因为到达那里可以有两条途径.苏珊发现2是1加1之和,她忽然领悟:若到某一个仅有一条途径,则该角点上的数字为前一个角点上的数字;若有两条途径,则为前两个角点上的数字之和.
苏珊:"瞧,又有四个角点标上了数字,我马上把其他角点也标上数字."请你替苏珊把剩下的角点标上数字,并且告诉她步行到学校共有多少条不同的路线.
苏珊的家H
1
1
1
2
1
3
2
5
学校G
剩下的5个点,自上而下,从左至右分别标以1,4,9,4,13.最后一点上的13表示苏珊去学校共有十三条最短路径.
苏珊所发现的是一种快速而简单的算法,用来计算从她家到学校的最短路径共有多少条.要是她把这些路径一条一条地画出来,然后再计数,这样肯定麻烦,还容易出错.如果街道的数目很多,那么这种方法根本就行不通.你不妨把这十三条路线都画出来,这样你就更能体会到苏珊的算法是多么地有效了.
你对这种算法是否已经理解,可以再画一些不同的街道网络,然后用这种算法来确定从任意点A到另一任意点B的最短路线共有多少条.网络可以是矩形网格,三角形网格,平行四边形网格和蜂窝状的正六边形网格.也可以用其他方法(例如组合公式)求解,但这种方法十分复杂,需要很高的技巧.
在国际象棋棋盘上,"车"从棋盘的一角到对角线上另一角的最短路径共有多少条?就像苏珊给街道交点标上数字一样,把棋盘上所有格子也都填上数字,于是问题就迎刃而解了."车"只能沿着右上方向朝另一个角的目标移动,便可以求出共有多少条最短路径.如图所示:
1
8
36
120
330
792
1716
3432
1
7
28
84
210
462
924
1716
1
6
21
56
126
252
462
792
1
5
15
35
70
126
210
330
1
4
10
20
35
56
84
120
1
3
6
10
15
21
28