当前位置:考高分吧中小学教育初中学习初一学习初一数学初一数学练习题中学趣味数学:足球上的玄妙» 正文

中学趣味数学:足球上的玄妙

[05-01 03:03:16]   来源:http://www.kgf8.com  初一数学练习题   阅读:8130

概要: 足球是许多人热爱的运动.但似乎很少有人留意到足球面的组成.从远处看足球似乎是一个完美的球体.但事实上,传统足球是由黑白两色皮黏合、缝制成的多面体,其中黑块皮为正五边形,白块皮为正六边形.一个有趣的问题是:黑、白皮各有多少块呢?观察一下会发现:黑块皮周围都是白块皮,即每一黑色皮块的边皆与白色皮块相邻,而每一白色皮块却只有3条边与黑色皮块相接.设x为黑色皮块的数目,而y为白色皮块的数目.则黑白图形相邻边的数目=5x=3y.因此足球面上的“黑白比”为:x∶y=3∶5.利用这个比值,只需知道较少的黑皮块数量,就可推算出较多的白皮块数量.我们数一数,就可发现黑皮有12块,由此可计算出白皮块有20块,而整个足球皮块总数为32块.这个问题如果不数黑皮块也可得到解决,但要借助于欧拉于1752年给出的凸多面体的欧拉公式.这一奇妙的定理描述了简单多面体的顶点数、面数及棱数之间的关系:将多面体的面数与顶点数相加再减去棱数,结果总是2.亦即,设多面体的面数为F,顶点数为V,棱数为E,则三者之间满足F+V-E=2.现在设足球的面、顶点、棱分别为F、V、E,并设

中学趣味数学:足球上的玄妙,标签:七年级数学练习题,http://www.kgf8.com

    足球是许多人热爱的运动.但似乎很少有人留意到足球面的组成.从远处看足球似乎是一个完美的球体.但事实上,传统足球是由黑白两色皮黏合、缝制成的多面体,其中黑块皮为正五边形,白块皮为正六边形.一个有趣的问题是:黑、白皮各有多少块呢?

  观察一下会发现:黑块皮周围都是白块皮,即每一黑色皮块的边皆与白色皮块相邻,而每一白色皮块却只有3条边与黑色皮块相接.设x为黑色皮块的数目,而y为白色皮块的数目.则黑白图形相邻边的数目=5x=3y.因此足球面上的“黑白比”为:xy=3∶5.利用这个比值,只需知道较少的黑皮块数量,就可推算出较多的白皮块数量.我们数一数,就可发现黑皮有12块,由此可计算出白皮块有20块,而整个足球皮块总数为32块.

  这个问题如果不数黑皮块也可得到解决,但要借助于欧拉于1752年给出的凸多面体的欧拉公式.这一奇妙的定理描述了简单多面体的顶点数、面数及棱数之间的关系:将多面体的面数与顶点数相加再减去棱数,结果总是2.亦即,设多面体的面数为F,顶点数为V,棱数为E,则三者之间满足FVE=2.

  现在设足球的面、顶点、棱分别为FVE,并设正五边形、正六边形分别有xy个.

  首先易知,面数Fx+y;又因为每两个相邻的正多边形恰好有一条公共边,即每条棱均为两个面的交线,所以棱数E;此外,观察可看到一黑两白的相邻三块皮交于一个公共顶点,换言之每个顶点对应三条边,所以顶点数V

  于是,由欧拉公式FVE=2得到

  与上面已经得到的5x=3y联立,即可解得x=12,y=20.

  因此足球上的黑皮正五边形有12个,白皮正六边形有20个.有意思的是,足球表面32块黑白相间的球皮,倒恰可象征参加世界杯决赛圈比赛的32支队伍.


Tag:初一数学练习题七年级数学练习题初中学习 - 初一学习 - 初一数学 - 初一数学练习题
保存 | 打印 | 关闭
《中学趣味数学:足球上的玄妙》相关文章